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James’ Construction
James’ construction: Hatcher’s book, section 3.2, p.224.

J(X)=free monoid generated by X with single relation that the
basepoint « = 1, having weak topology.

Suspension Splitting Theorem of the James Construction:
Hatcher’s book, Section 41, Proposition 41.2, p.468.

SJ(X) ~ \/ TXA

n=1

J(X) ~ Q¥ X for path-connected CW-complex. Hatcher’s book,
Section 4J, Theorem 4J.1, p.471. In Hatcher’s book, Section
4J, he mentions a little about EHP sequence.
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James-Hopf Maps and EHP fibre sequence

Hilton-Hopf Invariants: Whitehead’s book, Chapter Xl, Section
8, p.533-541. Also Neisendorfer’s book (Algebraic Methods in
Unstable Homotopy Theory), Chapters 4, 5.

James-Hopf map Hy: J(X) — J(X"*):

X1 Xo -+ Xp I1 Xi, A\ -+ A X, right lexicographic
1<ii<b<--<ixk<n
order.

Homework (EHP Fibre Sequence Theorem). There is a fibre
sequence S"1 _EL s = 9621 |ocalized at 2.

Hint: Let F be the homotopy fibre of Hy: QS" — QS2"~1. Show
that F ~ S"~1: Step 1. Show that, in mod 2 homology,
H*(QS") = H*(QS?" 1) @ H*(S" 1) is a free
H*(£25%"=1)-module. Step 2. Work on the Serre cohomology
spectral sequence.

Hopf invariant one problem: When is S” an H-space?
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EHP Sequences for Odd Primes

Reference: Neisendorfer’'s book (Algebraic Methods in
Unstable Homotopy Theory), Chapters 5.

There is a fibre sequence
Jp—1 (82”) E ,_/(82”) ~ 982n+1 Hp (San) ~ QSznp+1_
(Neisendorfer’s book Corollary 5.3.4, p.148.)

Toda Fibre Sequence. S~ —— QJ, {(S?") M, g2,
(Neisendorfer’s book Section 5.4.)
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The Functor A™"

References:

e Selick, Paul; Wu, Jie On natural coalgebra decompositions
of tensor algebras and loop suspensions. Mem. Amer.
Math. Soc. 148 (2000), no. 701, viii+109 pp.

e Selick, Paul; Wu, Jie The functor A™" on p-local spaces.
Math. Z. 253 (2006), no. 3, 435-451.

e Selick, Paul; Theriault, Stephen; Wu, Jie Functorial
homotopy decompositions of looped co-H spaces. Math.
Z. 267 (2011), no. 1-2, 139-153.

e Grbi¢, J.; Theriault, S.; Wu, J. Decompositions of looped
co-H-spaces. Proc. Amer. Math. Soc. 141(2013), no. 4,
1451-1464.

For path-connected p-local co-H-space X, A™"(X) is the
functorial smallest retract of 2.X containing the bottom cell.
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EHP Sequences for Finite Complexes

Reference:

e Wu, J. The functor A™" for (p — 1)-cell complexes and EHP
sequences. Israel J. Math. 178 (2010),349-391.

H.( ) means mod p homology. by = 3 qdimH,(Y;Z/p).
g=0

EHP sequence. Let Y be p- Iocal simply connected such that
Odd(Y) 0 and dlmH (Y) — 1. There is a fibre sequence
E(Y) _E. Amin(y) 2. Am'”(ZbY PH1Y), where
H.(E(Y)) = E(sTTH.(Y)).

Moreover the connecting map P: QA™"(£v=PH1Y) — E(Y)
factors through the bottom cell of E(Y).



EHP sequences
O0000@000

Generalized Hopf Invariant One Problems

Reference:

e Grbi¢, Jelena; Harper, John; Mimura, Mamoru; Theriault,
Stephen; Wu, Jie Rank p — 1 mod-p H-spaces. Israel J.
Math. 194 (2013), no. 2, 641-688.

Question 1. Let X be a simply connected CW-complex such
that H.(X;Z/p) is the exterior algebra of rank p — 1 with
generators in odd dimensions. Find a criterion when X is an
H-space localized at p.

Question 1—special case. For p = 3, consider X given as the
total space of spherical fibration over a sphere. Examples,
X=S8p(n+1)/Sp(n—1).
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Homotopy Groups and Spherical Fibrations over
Spheres
Let f: S2M+2k _, §2m+1 represent an element

[f] € mom12k(S?™1) localized at 3. Let E([f]) = E(XCy) and
A([f]) = An(2Cy).

There is a fibre sequence S?™1 — E([f]) — S2M+2k+1 with the
connecting map P;: QS?m+2k+1 _, §2m—1 gn extension of f.

7.(E([f]) are built by cokernels and kernels of
Py, . m, (QS2M+2k+1y 7 (S2M+T)),

There is a fibre sequence E([f]) — A([f]) — A(Z*™+2k+2[f]).

Question 2 (Homotopy Group Problem). Compute 7.(E([f])),
7« (A([f]) and their connections with homotopy groups of
spheres.
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Homotopy Groups and Spherical Fibrations over
Spheres

Question 3 (Hopf Invariant Problem). Does there exist a
homotopy commutative diagram

Q 82m+1 HP Q Sme—H

Y

QE([f]) ----- - QE([67])

Y Y

QSZm+2k+1 ﬁ’l QSZp(m+k)+1

for some [6] € mop(myk)(SP™HT).
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Homotopy Groups and Spherical Fibrations over
Spheres

Question 4 (Geometric Analysis on Homotopy). Does there
exist a manifold M([f]) such that M([f])s) =~ E([f])? If so,
classifying the elements [f] using geometric properties.

Note. E([f]) is only defined as a 3-local space.

The canonical suspension QXX — Q°YX induces
AMN(EX) — QA™N(£2X). It then should induce a
double-suspension E[f] — Q2E(X2[f]).

Question 5 (Double Suspension Problem). Let W([f]) be the
homotopy fibre of E([f]) — Q2E(X?[f]). Determine the
exponents of 7. (W([f])).

Question 6. Explore homotopy theory of A™" on p-cell
co-H-spaces.
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Example: 4 - Tors(7,(S%)) = 0

14(S%) = Z/2 using blackboard.

0%(S%(3))
O 2~ Q(2)
st ™ Q%(S°(3)) P2, gegs Q§3 e g8
2 Q1] Q([-1]"%)
55(s3<3>) ast M qgs
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Classical Theorems

Selick, Paul A decomposition of ., (S?P+1, Z/pZ), Topology 20
(1981), no. 2, 175-177: p - Torp(7.(S%)) = 0 for p > 2.

Q28 p) ~ Q2S3(3) () x C(P)(p)

Cohen, F. R.; Moore, J. C.; Neisendorfer, J. A. Torsion in
homotopy groups. Ann. of Math. (2) 109 (1979), no. 1,
121-168.

Cohen, F. R.; Moore, J. C.; Neisendorfer, J. A. The double
suspension and exponents of the homotopy groups of spheres.
Ann. of Math. (2) 110 (1979), no. 3, 549-565.

p" - Torp(m (S?™ 1) =0

for p > 3. Method. p: Q25?1 — Q282"+ factors through
SZn—1 .
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Barratt Conjecture

Barratt Conjecture. Suppose that [p'] ~ *: ¥°X — ¥2X. Then
Pt~ x: Q252X — Q?Y2X. In particular, p™' - . (£2X) = 0.

Barratt Conjecture on Mapping. Let f: ¥2X — Y be a map.
Suppose that [f] is of order bounded by p" in [£2X, Y]. Then [f]
is of order p'+! in the group [Q?X2X, Q?Y].
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Cohen Program

References:

e Cohen, F. R. On combinatorial group theory in homotopy.
Homotopy theory and its applications (Cocoyoc, 1993),
57-63, Contemp. Math., 188, Amer. Math. Soc.,
Providence, RI, 1995.

e Selick, Paul; Wu, Jie On natural coalgebra decompositions
of tensor algebras and loop suspensions. Mem. Amer.
Math. Soc. 148 (2000), no. 701, viii+109 pp.

e Wu, Jie Homotopy theory of the suspensions of the
projective plane. Mem. Amer. Math. Soc. 162 (2003), no.
769, x+130 pp.

e Wu, Jie On maps from loop suspensions to loop spaces
and the shuffle relations on the Cohen groups. Mem.
Amer. Math. Soc. 180 (2006), no. 851, vi+64 pp.

Now use blackboard for details.
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Thank You!



